LINEAR ALGEBRA REVIEW

Suppose that A is an $n \times n$ matrix. Then the followings are equivalent:

- A is invertible.
- There is an $n \times n$ matrix B such that $BA = I_n$.
- There is an $n \times n$ matrix B such that $AB = I_n$.
- A^T is invertible.
- $\operatorname{rank}(A) = \operatorname{n}=\operatorname{dim}(\operatorname{colspace}(A)) = \operatorname{dim}(\operatorname{rowspace}(A)).$
- Ax = 0 has only trivial solution.
- The null space of A is $\{0\}$.
- For any b in \mathbb{R}^n , Ax = b has a unique solution.
- ref(A) is an upper triangular matrix with identical 1 on the main diagonal.
- $\operatorname{rref}(A) = I_n$.
- The columns of A are linearly independent.
- The rows of A are linearly independent.
- The columns of A form a spanning set of \mathbb{R}^n .
- The rows of A form a spanning set of \mathbb{R}^n .
- The columns of A form a basis for \mathbb{R}^n .
- The rows of A form a basis for \mathbb{R}^n .
- $\operatorname{colspace}(A) = \operatorname{rowspace}(A) = \mathbb{R}^n$.
- If $\{v_1, \dots, v_k\}$ is linearly independent vectors (viewed as column vectors) in \mathbb{R}^n , then $\{Av_1, \dots, Av_k\}$ is again linearly independent.
- If $\{v_1, \dots, v_n\}$ is a basis (viewed as column vectors) for \mathbb{R}^n , then $\{Av_1, \dots, Av_n\}$ is again a basis for \mathbb{R}^n .
- The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $[x \mapsto Ax]$ has $\operatorname{Ker}(T) = \{0\}.$
- The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $[x \mapsto Ax]$ is one-to-one, that is, Tx = Ty implies x = y.

LINEAR ALGEBRA REVIEW

- The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $[x \mapsto Ax]$ has $\operatorname{Rng}(T) = \mathbb{R}^n$.
- The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $[x \mapsto Ax]$ is onto, that is, for every y in \mathbb{R}^n , there exists some x in \mathbb{R}^n such that Tx = y.
- det $A \neq 0$.
- All eigenvalues of A are nonzero.

Suppose that A is an $m \times n$ matrix, not necessarily square. Then the followings are true.

- $\operatorname{rank}(A) \le \min\{m, n\}.$
- If m < n, then
 - -Ax = 0 must have non-trivial solution;
 - the null space of A is non-trivial;
 - the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by $[x \mapsto Ax]$ has non-trivial Ker(T);
 - the linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ defined by $[x\mapsto Ax]$ is not one-to-one.
- If m > n, then
 - -Ax = b is not consistent for all b in \mathbb{R}^m ;
 - the columns of A cannot be a spanning set of \mathbb{R}^m ;
 - $-\operatorname{colspace}(A) \neq \mathbb{R}^m;$
 - the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by $[x \mapsto Ax]$ has $\operatorname{Rng}(T) \neq \mathbb{R}^m$;
 - the linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ defined by $[x\mapsto Ax]$ is not onto.

 $\mathbf{2}$