LINEAR ALGEBRA REVIEW

Suppose that A is an $n \times n$ matrix. Then the followings are equivalent:

- A is invertible.
- There is an $n \times n$ matrix B such that $B A=I_{n}$.
- There is an $n \times n$ matrix B such that $A B=I_{n}$.
- A^{T} is invertible.
- $\operatorname{rank}(A)=\mathrm{n}=\operatorname{dim}(\operatorname{colspace}(A))=\operatorname{dim}(\operatorname{rowspace}(A))$.
- $A x=0$ has only trivial solution.
- The null space of A is $\{0\}$.
- For any b in $\mathbb{R}^{n}, A x=b$ has a unique solution.
- $\operatorname{ref}(A)$ is an upper triangular matrix with identical 1 on the main diagonal.
- $\operatorname{rref}(A)=I_{n}$.
- The columns of A are linearly independent.
- The rows of A are linearly independent.
- The columns of A form a spanning set of \mathbb{R}^{n}.
- The rows of A form a spanning set of \mathbb{R}^{n}.
- The columns of A form a basis for \mathbb{R}^{n}.
- The rows of A form a basis for \mathbb{R}^{n}.
- $\operatorname{colspace}(A)=\operatorname{rowspace}(A)=\mathbb{R}^{n}$.
- If $\left\{v_{1}, \cdots, v_{k}\right\}$ is linearly independent vectors (viewed as column vectors) in \mathbb{R}^{n}, then $\left\{A v_{1}, \cdots, A v_{k}\right\}$ is again linearly independent.
- If $\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis (viewed as column vectors) for \mathbb{R}^{n}, then $\left\{A v_{1}, \cdots, A v_{n}\right\}$ is again a basis for \mathbb{R}^{n}.
- The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $[x \mapsto A x]$ has $\operatorname{Ker}(T)=\{0\}$.
- The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $[x \mapsto A x]$ is one-to-one, that is, $T x=T y$ implies $x=y$.
- The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $[x \mapsto A x]$ has $\operatorname{Rng}(T)=\mathbb{R}^{n}$.
- The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $[x \mapsto A x]$ is onto, that is, for every y in \mathbb{R}^{n}, there exists some x in \mathbb{R}^{n} such that $T x=y$.
- $\operatorname{det} A \neq 0$.
- All eigenvalues of A are nonzero.

Suppose that A is an $m \times n$ matrix, not necessarily square. Then the followings are true.

- $\operatorname{rank}(A) \leq \min \{m, n\}$.
- If $m<n$, then
- $A x=0$ must have non-trivial solution;
- the null space of A is non-trivial;
- the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $[x \mapsto A x]$ has non-trivial $\operatorname{Ker}(T)$;
- the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $[x \mapsto A x]$ is not one-to-one.
- If $m>n$, then
- $A x=b$ is not consistent for all b in \mathbb{R}^{m};
- the columns of A cannot be a spanning set of \mathbb{R}^{m};
- colspace $(A) \neq \mathbb{R}^{m}$;
- the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $[x \mapsto A x]$ has $\operatorname{Rng}(T) \neq \mathbb{R}^{m}$;
- the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $[x \mapsto A x]$ is not onto.

